Some remarks on splittings

Sławomir Szczepaniak (Polish Academy of Sciences)

Winter School Hejnice, 2013

Splittings

Let \mathcal{A} be a collection of pairwise disjoint families of ω.
For $x \subseteq \omega$ denote $x^{0}=x$ and $x^{1}=\omega \backslash x$.
The following is taken from A. Kamburelis and B. Wẹglorz, Splittings, Arch. Math. Logic 35 (1996).

Splitting family

We say that $s \in[\omega]^{\omega}$ splits a disjoint family $\left\{a_{n}\right\} \in \mathcal{A}$ iff

$$
\forall_{i<2} \exists_{n}^{\infty} a_{n} \subseteq s^{i}
$$

and $\mathcal{B} \subseteq[\omega]^{\omega}$ is called a splitting family w.r.t. \mathcal{A} if any $A \in \mathcal{A}$ is splitted by some member of \mathcal{B}.

Splittings

Let \mathcal{A} be a collection of pairwise disjoint families of ω.
For $x \subseteq \omega$ denote $x^{0}=x$ and $x^{1}=\omega \backslash x$.
The following is taken from A. Kamburelis and B. Węglorz,
Splittings, Arch. Math. Logic 35 (1996).

Splitting family

We say that $s \in[\omega]^{\omega}$ splits a disjoint family $\left\{a_{n}\right\} \in \mathcal{A}$ iff

$$
\forall_{i<2} \exists_{n}^{\infty} a_{n} \subseteq s^{i}
$$

and $\mathcal{B} \subseteq[\omega]^{\omega}$ is called a splitting family w.r.t. \mathcal{A} if any $A \in \mathcal{A}$ is splitted by some member of \mathcal{B}.

Splitting numbers

Define the splitting number w.r.t. \mathcal{A} as

$$
s(\mathcal{A})=\min \{|\mathcal{B}|: \mathcal{B} \text { is a splitting family w.r.t. } \mathcal{A}\} .
$$

Splittings

If $[\{\{n\}: n<\omega\}]^{\omega} \subseteq \mathcal{A}_{0} \subseteq \mathcal{A}_{1}$, then $s \leqslant s\left(\mathcal{A}_{0}\right) \leqslant s\left(\mathcal{A}_{1}\right)$.
We say that \mathcal{B} is a block-splitting family if it is \mathcal{A}-splitting for \mathcal{A} a collection of infinite families of pairwise disjoint finite subsets of ω.
We say that \mathcal{B} is a weakly ω-splitting (in short (ω, ω)-splitting) family if it is \mathcal{A}-splitting for \mathcal{A} a collection of infinite pairwise disjoint subfamilies of $[\omega]^{\omega}$.
The corresponding splitting numbers are denoted by $s_{\text {вгоск }}$ and $s_{\omega, \omega}$.

Some facts

Splittings

If $[\{\{n\}: n<\omega\}]^{\omega} \subseteq \mathcal{A}_{0} \subseteq \mathcal{A}_{1}$, then $s \leqslant s\left(\mathcal{A}_{0}\right) \leqslant s\left(\mathcal{A}_{1}\right)$.
We say that \mathcal{B} is a block-splitting family if it is \mathcal{A}-splitting for \mathcal{A} a collection of infinite families of pairwise disjoint finite subsets of ω.
We say that \mathcal{B} is a weakly ω-splitting (in short (ω, ω)-splitting) family if it is \mathcal{A}-splitting for \mathcal{A} a collection of infinite pairwise disjoint subfamilies of $[\omega]^{\omega}$.

The corresponding splitting numbers are denoted by $s_{\text {вгоск }}$ and $s_{\omega, \omega}$.

Some facts

(1) $s_{\text {вьоск }}=\max \{b, s\}$ (A.Kamburelis, B.Węglorz (1996))

Splittings

If $[\{\{n\}: n<\omega\}]^{\omega} \subseteq \mathcal{A}_{0} \subseteq \mathcal{A}_{1}$, then $s \leqslant s\left(\mathcal{A}_{0}\right) \leqslant s\left(\mathcal{A}_{1}\right)$.
We say that \mathcal{B} is a block-splitting family if it is \mathcal{A}-splitting for \mathcal{A} a collection of infinite families of pairwise disjoint finite subsets of ω.
We say that \mathcal{B} is a weakly ω-splitting (in short (ω, ω)-splitting) family if it is \mathcal{A}-splitting for \mathcal{A} a collection of infinite pairwise disjoint subfamilies of $[\omega]^{\omega}$.

The corresponding splitting numbers are denoted by $s_{\text {вгоск }}$ and $s_{\omega, \omega}$.

Some facts

(1) $s_{\text {вıоск }}=\max \{b, s\}$ (A.Kamburelis, B.Wegglorz (1996))
(2) $s_{\omega, \omega}=s$ (H. Mildenberger, D.Raghavan, J.Steprāns (2012)) and if $b \leqslant s$ then any block-splitting family is (ω, ω)-splitting.

Motivation

Motivation: recent proofs of the existence of separable complete MAD family under mild set-theoretical assumptions.

Motivation

Motivation: recent proofs of the existence of separable complete MAD family under mild set-theoretical assumptions.

Definition: completely separable MAD family

Motivation

Motivation: recent proofs of the existence of separable complete MAD family under mild set-theoretical assumptions.

Definition: completely separable MAD family

An almost disjoint family $\mathcal{A} \subseteq[\omega]^{\omega}$ is called completely separable if for any $b \in \mathcal{I}^{+}(\mathcal{A})$ one can find $a \in \mathcal{A}$ such that $a \subseteq b$.

Motivation

Motivation: recent proofs of the existence of separable complete MAD family under mild set-theoretical assumptions.

Definition: completely separable MAD family

An almost disjoint family $\mathcal{A} \subseteq[\omega]^{\omega}$ is called completely separable if for any $b \in \mathcal{I}^{+}(\mathcal{A})$ one can find $a \in \mathcal{A}$ such that $a \subseteq b$.

Here, $\mathcal{I}^{+}(\mathcal{A})$ denotes $\mathcal{I}(\mathcal{A})$-positive elements of an ideal $\mathcal{I}(\mathcal{A})$ generated by \mathcal{A}, i.e. $a \in \mathcal{I}(\mathcal{A})$ iff $a \subseteq_{*} \bigcup A$ for some $A \in[\mathcal{A}]^{<\omega}$.

Motivation

Motivation: recent proofs of the existence of separable complete MAD family under mild set-theoretical assumptions.

Definition: completely separable MAD family

An almost disjoint family $\mathcal{A} \subseteq[\omega]^{\omega}$ is called completely separable if for any $b \in \mathcal{I}^{+}(\mathcal{A})$ one can find $a \in \mathcal{A}$ such that $a \subseteq b$.

Here, $\mathcal{I}^{+}(\mathcal{A})$ denotes $\mathcal{I}(\mathcal{A})$-positive elements of an ideal $\mathcal{I}(\mathcal{A})$ generated by \mathcal{A}, i.e. $a \in \mathcal{I}(\mathcal{A})$ iff $a \subseteq_{*} \bigcup A$ for some $A \in[\mathcal{A}]^{<\omega}$.

Erdös-Shelah Problem (1972)
ZFC \vdash there exists completely separable MAD families

MAD vs SANE

S.Shelah, MAD saturated families and SANE Player, can. J. Math. 63(2011)

There exists a completely separable MAD family if:

MAD vs SANE

S.Shelah, MAD saturated families and SANE Player, can. J. Math. 63(2011)

There exists a completely separable MAD family if:

MAD vs SANE

S.Shelah, MAD saturated families and SANE Player, can. J. Math. 63(2011)

There exists a completely separable MAD family if:
(1) $s<a$

MAD vs SANE

S.Shelah, MAD saturated families and SANE Player, can. J. Math. 63(2011)

There exists a completely separable MAD family if:
(1) $s<a$
(2) $s=a$ and pcf-like principle $U(s)$ holds

MAD vs SANE

S.Shelah, MAD saturated families and SANE Player, can. J. Math. 63(2011)

There exists a completely separable MAD family if:
(1) $s<a$
(2) $s=a$ and pcf-like principle $U(s)$ holds
(3) $s>a$ and pcf-like principle $P(a, s)$ holds

MAD vs SANE

S.Shelah, MAD saturated families and SANE Player, can. J. Math. 63(2011) There exists a completely separable MAD family if:
(1) $s<a$
(2) $s=a$ and pcf-like principle $U(s)$ holds
(3) $s>a$ and pcf-like principle $P(a, s)$ holds

Question

MAD vs SANE

S.Shelah, MAD saturated families and SANE Player, can. J. Math. 63(2011) There exists a completely separable MAD family if:
(1) $s<a$
(2) $s=a$ and pcf-like principle $U(s)$ holds
(3) $s>a$ and pcf-like principle $P(a, s)$ holds

Question

One can remove pcf-like assumptions?

MAD vs SANE

S.Shelah, MAD saturated families and SANE Player, can. J. Mast. 63(2011)

There exists a completely separable MAD family if:
(1) $s<a$
(2) $s=a$ and pcf-like principle $U(s)$ holds
(3) $s>a$ and pcf-like principle $P(a, s)$ holds

Question

One can remove pcf-like assumptions?
For the second case - YES - as proven by H. Mildenberger, D.Raghavan, J.Steprāns in Splitting families and complete separability (2012, to appear in Can. Bull. Math.).

Completely separable MAD family from $s \leqslant a$

Sketch of the (Shelah)-Mildenberger-Raghavan-Steprāns proof of the existence completely separable MAD family from $s \leqslant a$. Using a witness $\left\{x_{\xi} \in[\omega]^{\omega}: \xi<s\right\}$ for $s_{\omega, \omega}=s$ build \mathcal{A} by an induction of the length \mathfrak{c} by extending at each stage $\delta<\mathfrak{c}$ a partial family $\mathcal{A}_{\delta}=\mathcal{A} \upharpoonright \delta=\left\{a_{\sigma_{\alpha}}: \alpha<\delta\right\}$ indexed by nodes of the tree $2^{<s}$.

Completely separable MAD family from $s \leqslant a$

Sketch of the (Shelah)-Mildenberger-Raghavan-Steprāns proof of the existence completely separable MAD family from $s \leqslant a$. Using a witness $\left\{x_{\xi} \in[\omega]^{\omega}: \xi<s\right\}$ for $s_{\omega, \omega}=s$ build \mathcal{A} by an induction of the length \mathfrak{c} by extending at each stage $\delta<\mathfrak{c}$ a partial family $\mathcal{A}_{\delta}=\mathcal{A} \upharpoonright \delta=\left\{a_{\sigma_{\alpha}}: \alpha<\delta\right\}$ indexed by nodes of the tree $2^{<s}$.

Splitting Lemma

If $b \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ then one can find $x_{\alpha}, \alpha<s$, splitting b into $\mathcal{I}\left(\mathcal{A}_{\delta}\right)$-positive pieces, i.e. for both $i<2$ it holds $b \cap x_{\alpha}^{i} \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$.

Completely separable MAD family from $s \leqslant a$

Sketch of the (Shelah)-Mildenberger-Raghavan-Steprāns proof of the existence completely separable MAD family from $s \leqslant a$. Using a witness $\left\{x_{\xi} \in[\omega]^{\omega}: \xi<s\right\}$ for $s_{\omega, \omega}=s$ build \mathcal{A} by an induction of the length \mathfrak{c} by extending at each stage $\delta<\mathfrak{c}$ a partial family $\mathcal{A}_{\delta}=\mathcal{A} \upharpoonright \delta=\left\{a_{\sigma_{\alpha}}: \alpha<\delta\right\}$ indexed by nodes of the tree $2^{<s}$.

Splitting Lemma

If $b \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ then one can find $x_{\alpha}, \alpha<s$, splitting b into $\mathcal{I}\left(\mathcal{A}_{\delta}\right)$-positive pieces, i.e. for both $i<2$ it holds $b \cap x_{\alpha}^{i} \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$.

For $\eta \in 2^{<s}$ define a family of pseudointersections as follows

$$
\mathcal{I}_{\eta}=\left\{a \in[\omega]^{\omega}: \forall_{\xi<\operatorname{dom}(\eta)} a \subseteq_{*} x_{\xi}^{\eta(\xi)}\right\} .
$$

Completely separable MAD family from $s \leqslant a$

Main Lemma

Let $s \leqslant a$ and $\delta<\mathfrak{c}$. For any $b \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ one can find $\sigma \in 2^{<s}$ such that $\sigma \nsubseteq \sigma_{\alpha}$ for all $\alpha<\delta$ and $a \in \mathcal{I}_{\sigma} \cap[b]^{\omega}$ such that $\mathcal{A}_{\delta} \cup\{a\}$ is almost disjoint family.

Completely separable MAD family from $s \leqslant a$

Main Lemma

Let $s \leqslant a$ and $\delta<\mathfrak{c}$. For any $b \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ one can find $\sigma \in 2^{<s}$ such that $\sigma \nsubseteq \sigma_{\alpha}$ for all $\alpha<\delta$ and $a \in \mathcal{I}_{\sigma} \cap[b]^{\omega}$ such that $\mathcal{A}_{\delta} \cup\{a\}$ is almost disjoint family.

Sketch/ideas/picture of the proof

Use Splitting Lemma and x_{ξ} 's to construct a perfect subtree of $\left\{\sigma_{s}: s \in 2^{<\omega}\right\}$ of $2^{<s}$ and $\left\{b_{s}: s \in 2^{<\omega}\right\} \subseteq \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ such that for all $s \in 2^{<\omega}, i<2$ and $\gamma<\operatorname{dom}\left(\sigma_{s}\right)$ it holds

- $b_{s} \cap x_{\gamma}^{1-\sigma_{s}\left(\operatorname{dom}\left(\sigma_{s}\right)\right)} \in \mathcal{I}\left(\mathcal{A}_{\delta}\right)$ and $b_{s^{\wedge} i}=b_{s} \cap x_{\operatorname{dom}\left(\sigma_{s}\right)}^{i}$,
- $b_{0}=b$ and $b_{s} \cap x_{d o m\left(\sigma_{s}\right)}^{i} \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$.

Completely separable MAD family from $s \leqslant a$

Sketch/ideas/picture of the proof - continued

Choose some branch f satisfying $\tau_{f} \nsubseteq \sigma_{\alpha}$ for all $\alpha<\delta$ (here, τ_{f} is a supremum of nodes from $2^{<s}$ indexed by the branch f). One can ensure that a "comb" between consecutive nodes of the branch consists of $\mathcal{I}\left(\mathcal{A}_{\delta}\right)$-small members and there exists $a^{\prime} \in \mathcal{I}_{\tau_{f}}$ (vide blackboard). In other words

$$
\left(\forall \xi<\operatorname{dom}\left(\tau_{f}\right)\right)\left(\exists F_{\xi} \in[\delta]^{<\omega}\right)\left[a^{\prime} \cap x_{\xi}^{1-\tau_{f}(\xi)} \subseteq_{*} \bigcup\left\{a_{\alpha}: \alpha \in F_{\xi}\right\}\right] .
$$

Completely separable MAD family from $s \leqslant a$

Sketch/ideas/picture of the proof - continued

Choose some branch f satisfying $\tau_{f} \varsubsetneqq \sigma_{\alpha}$ for all $\alpha<\delta$ (here, τ_{f} is a supremum of nodes from $2^{<s}$ indexed by the branch f). One can ensure that a "comb" between consecutive nodes of the branch consists of $\mathcal{I}\left(\mathcal{A}_{\delta}\right)$-small members and there exists $a^{\prime} \in \mathcal{I}_{\tau_{f}}$ (vide blackboard). In other words
$\left(\forall \xi<\operatorname{dom}\left(\tau_{f}\right)\right)\left(\exists F_{\xi} \in[\delta]^{<\omega}\right)\left[a^{\prime} \cap x_{\xi}^{1-\tau_{f}(\xi)} \subseteq_{*} \bigcup\left\{a_{\alpha}: \alpha \in F_{\xi}\right\}\right]$.
Putting $\mathcal{F}=\bigcup\left\{F_{\xi}: \xi<\tau_{f}\right\}$ and $\mathcal{G}=\left\{\alpha<\delta: \sigma_{\alpha} \subseteq \tau_{f}\right\}$, we see $|\mathcal{F} \cup \mathcal{G}|<s \leqslant a$. As $a^{\prime} \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ one can find $a \in\left[a^{\prime}\right]^{\omega}$ such that $\{a\} \cup \mathcal{A}_{\delta} \upharpoonright(\mathcal{F} \cup \mathcal{G})$ is almost disjoint family. Finally, one can easily check that such a works, i.e. $\mathcal{A}_{\delta} \cup\{a\}$ is almost disjoint family.

Completely separable MAD family from $s \leqslant a$

Final inductive construction

Enumerate $\left\{b_{\delta}: \delta<\mathfrak{c}\right\}=[\omega]^{\omega}$. Use Main Lemma through all \mathfrak{c} at stage $\delta<\mathfrak{c}$ for $b=b_{\delta}$ if $b_{\delta} \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ and $b=\omega$ otherwise.

Completely separable MAD family from $s \leqslant a$

Final inductive construction

Enumerate $\left\{b_{\delta}: \delta<\mathfrak{c}\right\}=[\omega]^{\omega}$. Use Main Lemma through all \mathfrak{c} at stage $\delta<\mathfrak{c}$ for $b=b_{\delta}$ if $b_{\delta} \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ and $b=\omega$ otherwise.

This gives families $\left\{\sigma_{\alpha}: \alpha<\mathfrak{c}\right\} \subseteq 2^{<s},\left\{a_{\alpha}: \alpha<\mathfrak{c}\right\} \subseteq[\omega]^{\omega}$ such that for all $\alpha<\mathfrak{c}$ it holds $a_{\alpha} \in \mathcal{I}_{\sigma_{\alpha}}$ and $a_{\alpha} \subseteq b_{\alpha}$ if $b_{\alpha} \in \mathcal{I}^{+}\left(\mathcal{A}_{\alpha}\right)$.

Completely separable MAD family from $s \leqslant a$

Final inductive construction

Enumerate $\left\{b_{\delta}: \delta<\mathfrak{c}\right\}=[\omega]^{\omega}$. Use Main Lemma through all \mathfrak{c} at stage $\delta<\mathfrak{c}$ for $b=b_{\delta}$ if $b_{\delta} \in \mathcal{I}^{+}\left(\mathcal{A}_{\delta}\right)$ and $b=\omega$ otherwise.

This gives families $\left\{\sigma_{\alpha}: \alpha<\mathfrak{c}\right\} \subseteq 2^{<s},\left\{a_{\alpha}: \alpha<\mathfrak{c}\right\} \subseteq[\omega]^{\omega}$ such that for all $\alpha<\mathfrak{c}$ it holds $a_{\alpha} \in \mathcal{I}_{\sigma_{\alpha}}$ and $a_{\alpha} \subseteq b_{\alpha}$ if $b_{\alpha} \in \mathcal{I}^{+}\left(\mathcal{A}_{\alpha}\right)$.
Why it works? Given any $b \in \mathcal{I}^{+}\left(\mathcal{A}_{\mathfrak{c}}\right)=\bigcap\left\{\mathcal{I}^{+}\left(\mathcal{A}_{\alpha}\right): \alpha<\mathfrak{c}\right\}$ choose $\delta<\mathfrak{c}$ with $b=b_{\delta}$. Then by tha above construction $b_{\delta} \supseteq a_{\delta} \in \mathcal{A}_{\mathfrak{c}}$, so completely separable MAD family is cooked.

Conclusion

Open Problem

How to get rid of $P(a, s)$ from the third case of Shelah's proof?

Conclusion

Open Problem

How to get rid of $P(a, s)$ from the third case of Shelah's proof?

Quest for splitting families

Use $b \leqslant a<s$ to find a special splitting family related (somehow) to b and prove analogons of Splitting Lemma and Main Lemma. While H.Mildenberger, D.Raghavan, J.Steprāns used $s_{\omega, \omega}$ to remove the assumption $U(s)$ from the second case, the framework of $s(\mathcal{A})$'s does not seemed to be sufficient for the removing $P(a, s)$.

THANK YOU!

