## Some remarks on splittings

## Sławomir Szczepaniak (Polish Academy of Sciences)

WINTER SCHOOL Hejnice, 2013

- \* E > \* E >

Sławomir Szczepaniak (Polish Academy of Sciences) Some remarks on splittings

# Splittings

Let  $\mathcal{A}$  be a collection of pairwise disjoint families of  $\omega$ . For  $x \subseteq \omega$  denote  $x^0 = x$  and  $x^1 = \omega \setminus x$ . The following is taken from A. Kamburelis and B. Węglorz, *Splittings*, Arch. Math. Logic 35 (1996).

### Splitting family

We say that  $s \in [\omega]^{\omega}$  splits a disjoint family  $\{a_n\} \in \mathcal{A}$  iff

$$\forall_{i<2}\exists_n^\infty a_n \subseteq s^i$$

and  $\mathcal{B} \subseteq [\omega]^{\omega}$  is called *a splitting family w.r.t.*  $\mathcal{A}$  if any  $A \in \mathcal{A}$  is splitted by some member of  $\mathcal{B}$ .

□→ < □→ < □→</p>

# Splittings

Let  $\mathcal{A}$  be a collection of pairwise disjoint families of  $\omega$ . For  $x \subseteq \omega$  denote  $x^0 = x$  and  $x^1 = \omega \setminus x$ . The following is taken from A. Kamburelis and B. Węglorz, *Splittings*, Arch. Math. Logic 35 (1996).

### Splitting family

We say that  $s \in [\omega]^{\omega}$  splits a disjoint family  $\{a_n\} \in \mathcal{A}$  iff

$$\forall_{i<2} \exists_n^\infty a_n \subseteq s^i$$

and  $\mathcal{B} \subseteq [\omega]^{\omega}$  is called *a splitting family w.r.t.*  $\mathcal{A}$  if any  $A \in \mathcal{A}$  is splitted by some member of  $\mathcal{B}$ .

### Splitting numbers

```
Define the splitting number w.r.t. A as
```

 $s(\mathcal{A}) = \min \left\{ |\mathcal{B}| : \mathcal{B} \text{ is a splitting family w.r.t. } \mathcal{A} 
ight\}.$ 

Sławomir Szczepaniak (Polish Academy of Sciences) Some remarks on splittings

If  $[\{\{n\}: n < \omega\}]^{\omega} \subseteq \mathcal{A}_0 \subseteq \mathcal{A}_1$ , then  $s \leqslant s(\mathcal{A}_0) \leqslant s(\mathcal{A}_1)$ .

We say that  $\mathcal{B}$  is a *block-splitting* family if it is  $\mathcal{A}$ -splitting for  $\mathcal{A}$  a collection of infinite families of pairwise disjoint finite subsets of  $\omega$ .

We say that  $\mathcal{B}$  is a *weakly*  $\omega$ -splitting (in short  $(\omega, \omega)$ -splitting) family if it is  $\mathcal{A}$ -splitting for  $\mathcal{A}$  a collection of infinite pairwise disjoint subfamilies of  $[\omega]^{\omega}$ .

The corresponding splitting numbers are denoted by  $s_{\text{\tiny BLOCK}}$  and  $s_{\omega,\omega}$ .

Some facts

- 4 同 2 4 日 2 4 日 2

If  $[\{\{n\}: n < \omega\}]^{\omega} \subseteq \mathcal{A}_0 \subseteq \mathcal{A}_1$ , then  $s \leqslant s(\mathcal{A}_0) \leqslant s(\mathcal{A}_1)$ .

We say that  $\mathcal{B}$  is a *block-splitting* family if it is  $\mathcal{A}$ -splitting for  $\mathcal{A}$  a collection of infinite families of pairwise disjoint finite subsets of  $\omega$ .

We say that  $\mathcal{B}$  is a *weakly*  $\omega$ -splitting (in short  $(\omega, \omega)$ -splitting) family if it is  $\mathcal{A}$ -splitting for  $\mathcal{A}$  a collection of infinite pairwise disjoint subfamilies of  $[\omega]^{\omega}$ .

The corresponding splitting numbers are denoted by  $s_{\text{\tiny BLOCK}}$  and  $s_{\omega,\omega}$ .

- 4 同 2 4 回 2 4 回 2 4

### Some facts

•  $s_{\text{BLOCK}} = \max\{b, s\}$  (A.Kamburelis, B.Węglorz (1996))

If  $[\{\{n\}: n < \omega\}]^{\omega} \subseteq \mathcal{A}_0 \subseteq \mathcal{A}_1$ , then  $s \leqslant s(\mathcal{A}_0) \leqslant s(\mathcal{A}_1)$ .

We say that  $\mathcal{B}$  is a *block-splitting* family if it is  $\mathcal{A}$ -splitting for  $\mathcal{A}$  a collection of infinite families of pairwise disjoint finite subsets of  $\omega$ .

We say that  $\mathcal{B}$  is a *weakly*  $\omega$ -splitting (in short  $(\omega, \omega)$ -splitting) family if it is  $\mathcal{A}$ -splitting for  $\mathcal{A}$  a collection of infinite pairwise disjoint subfamilies of  $[\omega]^{\omega}$ .

The corresponding splitting numbers are denoted by  $s_{\text{\tiny BLOCK}}$  and  $s_{\omega,\omega}$ .

### Some facts

- $s_{\text{BLOCK}} = \max\{b, s\}$  (A.Kamburelis, B.Węglorz (1996))
- ②  $s_{\omega,\omega} = s$  (H. Mildenberger, D.Raghavan, J.Steprāns (2012)) and if  $b \leq s$  then any block-splitting family is ( $\omega, \omega$ )-splitting.

イロン イボン イヨン イヨン

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition: completely separable MAD family

A B > A B >

#### Definition: completely separable MAD family

An almost disjoint family  $\mathcal{A} \subseteq [\omega]^{\omega}$  is called *completely separable* if for any  $b \in \mathcal{I}^+(\mathcal{A})$  one can find  $a \in \mathcal{A}$  such that  $a \subseteq b$ .

□→ < □→ < □→</p>

### Definition: completely separable MAD family

An almost disjoint family  $\mathcal{A} \subseteq [\omega]^{\omega}$  is called *completely separable* if for any  $b \in \mathcal{I}^+(\mathcal{A})$  one can find  $a \in \mathcal{A}$  such that  $a \subseteq b$ .

Here,  $\mathcal{I}^+(\mathcal{A})$  denotes  $\mathcal{I}(\mathcal{A})$ -positive elements of an ideal  $\mathcal{I}(\mathcal{A})$  generated by  $\mathcal{A}$ , i.e.  $a \in \mathcal{I}(\mathcal{A})$  iff  $a \subseteq_* \bigcup \mathcal{A}$  for some  $\mathcal{A} \in [\mathcal{A}]^{<\omega}$ .

伺 と く ヨ と く ヨ と

Definition: completely separable MAD family

An almost disjoint family  $\mathcal{A} \subseteq [\omega]^{\omega}$  is called *completely separable* if for any  $b \in \mathcal{I}^+(\mathcal{A})$  one can find  $a \in \mathcal{A}$  such that  $a \subseteq b$ .

Here,  $\mathcal{I}^+(\mathcal{A})$  denotes  $\mathcal{I}(\mathcal{A})$ -positive elements of an ideal  $\mathcal{I}(\mathcal{A})$  generated by  $\mathcal{A}$ , i.e.  $a \in \mathcal{I}(\mathcal{A})$  iff  $a \subseteq_* \bigcup \mathcal{A}$  for some  $\mathcal{A} \in [\mathcal{A}]^{<\omega}$ .

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

### Erdös-Shelah Problem (1972)

 $ZFC \vdash there \ exists \ completely \ separable \ MAD \ families \ ???$ 

Sławomir Szczepaniak (Polish Academy of Sciences) Some remarks on splittings

There exists a completely separable MAD family if:

□→ < □→ < □→</p>

There exists a completely separable MAD family if:

□→ < □→ < □→</p>

There exists a completely separable MAD family if:



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

There exists a completely separable MAD family if:

- Image: S ≤ a
- **2** s = a and pcf-like principle U(s) holds

伺 ト イヨト イヨト

There exists a completely separable MAD family if:

- **①** s < a
- **2** s = a and pcf-like principle U(s) holds
- s > a and pcf-like principle P(a, s) holds

伺 と く ヨ と く ヨ と

# MAD vs SANE

### S.Shelah, MAD saturated families and SANE Player, Can. J. Math. 63(2011)

There exists a completely separable MAD family if:

- **○** *s* < *a*
- **2** s = a and pcf-like principle U(s) holds
- s > a and pcf-like principle P(a, s) holds

#### Question

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# MAD vs SANE

### S.Shelah, MAD saturated families and SANE Player, Can. J. Math. 63(2011)

There exists a completely separable MAD family if:

- **①** *s* < *a*
- **2** s = a and pcf-like principle U(s) holds
- s > a and pcf-like principle P(a, s) holds

#### Question

One can remove pcf-like assumptions?

・ 同 ト ・ ヨ ト ・ ヨ ト

There exists a completely separable MAD family if:

- **○** *s* < *a*
- **2** s = a and pcf-like principle U(s) holds
- s > a and pcf-like principle P(a, s) holds

#### Question

One can remove pcf-like assumptions?

For the second case - YES - as proven by H. Mildenberger, D.Raghavan, J.Steprāns in *Splitting families and complete separability* (2012, to appear in Can. Bull. Math.).

- 4 同 2 4 日 2 4 日 2 4

Sketch of the (Shelah)-Mildenberger-Raghavan-Steprāns proof of the existence completely separable MAD family from  $s \leq a$ . Using a witness  $\{x_{\xi} \in [\omega]^{\omega} : \xi < s\}$  for  $s_{\omega,\omega} = s$  build  $\mathcal{A}$  by an induction of the length  $\mathfrak{c}$  by extending at each stage  $\delta < \mathfrak{c}$  a partial family  $\mathcal{A}_{\delta} = \mathcal{A} \upharpoonright \delta = \{a_{\sigma_{\alpha}} : \alpha < \delta\}$  indexed by nodes of the tree  $2^{<s}$ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sketch of the (Shelah)-Mildenberger-Raghavan-Steprāns proof of the existence completely separable MAD family from  $s \leq a$ . Using a witness  $\{x_{\xi} \in [\omega]^{\omega} : \xi < s\}$  for  $s_{\omega,\omega} = s$  build  $\mathcal{A}$  by an induction of the length  $\mathfrak{c}$  by extending at each stage  $\delta < \mathfrak{c}$  a partial family  $\mathcal{A}_{\delta} = \mathcal{A} \upharpoonright \delta = \{a_{\sigma_{\alpha}} : \alpha < \delta\}$  indexed by nodes of the tree  $2^{<s}$ .

### Splitting Lemma

If  $b \in \mathcal{I}^+(\mathcal{A}_{\delta})$  then one can find  $x_{\alpha}$ ,  $\alpha < s$ , splitting b into  $\mathcal{I}(\mathcal{A}_{\delta})$ -positive pieces, i.e. for both i < 2 it holds  $b \cap x_{\alpha}^i \in \mathcal{I}^+(\mathcal{A}_{\delta})$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Sketch of the (Shelah)-Mildenberger-Raghavan-Steprāns proof of the existence completely separable MAD family from  $s \leq a$ . Using a witness  $\{x_{\xi} \in [\omega]^{\omega} : \xi < s\}$  for  $s_{\omega,\omega} = s$  build  $\mathcal{A}$  by an induction of the length  $\mathfrak{c}$  by extending at each stage  $\delta < \mathfrak{c}$  a partial family  $\mathcal{A}_{\delta} = \mathcal{A} \upharpoonright \delta = \{a_{\sigma_{\alpha}} : \alpha < \delta\}$  indexed by nodes of the tree  $2^{<s}$ .

#### Splitting Lemma

If  $b \in \mathcal{I}^+(\mathcal{A}_{\delta})$  then one can find  $x_{\alpha}$ ,  $\alpha < s$ , splitting b into  $\mathcal{I}(\mathcal{A}_{\delta})$ -positive pieces, i.e. for both i < 2 it holds  $b \cap x_{\alpha}^i \in \mathcal{I}^+(\mathcal{A}_{\delta})$ .

For  $\eta \in 2^{<s}$  define a family of pseudointersections as follows

$$\mathcal{I}_\eta = \left\{ oldsymbol{a} \in [\omega]^\omega : orall_{\xi < \mathsf{dom}(\eta)} \, oldsymbol{a} \subseteq_* \mathsf{x}^{\eta(\xi)}_\xi 
ight\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Main Lemma

Let  $s \leq a$  and  $\delta < \mathfrak{c}$ . For any  $b \in \mathcal{I}^+(\mathcal{A}_{\delta})$  one can find  $\sigma \in 2^{<s}$  such that  $\sigma \subsetneq \sigma_{\alpha}$  for all  $\alpha < \delta$  and  $a \in \mathcal{I}_{\sigma} \cap [b]^{\omega}$  such that  $\mathcal{A}_{\delta} \cup \{a\}$  is almost disjoint family.

□→ < □→ < □→</p>

#### Main Lemma

Let  $s \leq a$  and  $\delta < \mathfrak{c}$ . For any  $b \in \mathcal{I}^+(\mathcal{A}_{\delta})$  one can find  $\sigma \in 2^{<s}$  such that  $\sigma \subsetneq \sigma_{\alpha}$  for all  $\alpha < \delta$  and  $a \in \mathcal{I}_{\sigma} \cap [b]^{\omega}$  such that  $\mathcal{A}_{\delta} \cup \{a\}$  is almost disjoint family.

### Sketch/ideas/picture of the proof

Use Splitting Lemma and  $x_{\xi}$ 's to construct a perfect subtree of  $\{\sigma_s : s \in 2^{<\omega}\}$  of  $2^{<s}$  and  $\{b_s : s \in 2^{<\omega}\} \subseteq \mathcal{I}^+(\mathcal{A}_{\delta})$  such that for all  $s \in 2^{<\omega}$ , i < 2 and  $\gamma < dom(\sigma_s)$  it holds •  $b_s \cap x_{\gamma}^{1-\sigma_s(dom(\sigma_s))} \in \mathcal{I}(\mathcal{A}_{\delta})$  and  $b_{s\uparrow i} = b_s \cap x^i_{dom(\sigma_s)}$ , •  $b_0 = b$  and  $b_s \cap x^i_{dom(\sigma_s)} \in \mathcal{I}^+(\mathcal{A}_{\delta})$ .

- 4 同 2 4 日 2 4 日 2 4

### Sketch/ideas/picture of the proof - continued

Choose some branch f satisfying  $\tau_f \subsetneq \sigma_\alpha$  for all  $\alpha < \delta$  (here,  $\tau_f$  is a supremum of nodes from  $2^{<s}$  indexed by the branch f). One can ensure that a "comb" between consecutive nodes of the branch consists of  $\mathcal{I}(\mathcal{A}_{\delta})$ -small members and there exists  $a' \in \mathcal{I}_{\tau_f}$  (vide blackboard). In other words

$$(\forall \xi < dom( au_f))(\exists F_{\xi} \in [\delta]^{<\omega}) \left[ a' \cap x_{\xi}^{1- au_f(\xi)} \subseteq_* \bigcup \{a_{lpha} : lpha \in F_{\xi}\} 
ight]$$

### Sketch/ideas/picture of the proof - continued

Choose some branch f satisfying  $\tau_f \subsetneq \sigma_\alpha$  for all  $\alpha < \delta$  (here,  $\tau_f$  is a supremum of nodes from  $2^{<s}$  indexed by the branch f). One can ensure that a "comb" between consecutive nodes of the branch consists of  $\mathcal{I}(\mathcal{A}_{\delta})$ -small members and there exists  $a' \in \mathcal{I}_{\tau_f}$  (vide blackboard). In other words

$$(\forall \xi < dom(\tau_f))(\exists F_{\xi} \in [\delta]^{<\omega}) \left[a' \cap x_{\xi}^{1-\tau_f(\xi)} \subseteq_* \bigcup \{a_{\alpha} : \alpha \in F_{\xi}\}\right].$$

Putting  $\mathcal{F} = \bigcup \{F_{\xi} : \xi < \tau_f\}$  and  $\mathcal{G} = \{\alpha < \delta : \sigma_{\alpha} \subseteq \tau_f\}$ , we see  $|\mathcal{F} \cup \mathcal{G}| < s \leq a$ . As  $a' \in \mathcal{I}^+(\mathcal{A}_{\delta})$  one can find  $a \in [a']^{\omega}$  such that  $\{a\} \cup \mathcal{A}_{\delta} \upharpoonright (\mathcal{F} \cup \mathcal{G})$  is almost disjoint family. Finally, one can easily check that such *a* works, i.e.  $\mathcal{A}_{\delta} \cup \{a\}$  is almost disjoint family.

(本間) (本語) (本語)

#### Final inductive construction

Enumerate  $\{b_{\delta} : \delta < \mathfrak{c}\} = [\omega]^{\omega}$ . Use *Main Lemma* through all  $\mathfrak{c}$  - at stage  $\delta < \mathfrak{c}$  for  $b = b_{\delta}$  if  $b_{\delta} \in \mathcal{I}^+(\mathcal{A}_{\delta})$  and  $b = \omega$  otherwise.

□ > < □ > < □ >

#### Final inductive construction

Enumerate  $\{b_{\delta} : \delta < \mathfrak{c}\} = [\omega]^{\omega}$ . Use *Main Lemma* through all  $\mathfrak{c}$  - at stage  $\delta < \mathfrak{c}$  for  $b = b_{\delta}$  if  $b_{\delta} \in \mathcal{I}^+(\mathcal{A}_{\delta})$  and  $b = \omega$  otherwise.

This gives families  $\{\sigma_{\alpha} : \alpha < \mathfrak{c}\} \subseteq 2^{<\mathfrak{s}}$ ,  $\{\mathfrak{a}_{\alpha} : \alpha < \mathfrak{c}\} \subseteq [\omega]^{\omega}$  such that for all  $\alpha < \mathfrak{c}$  it holds  $\mathfrak{a}_{\alpha} \in \mathcal{I}_{\sigma_{\alpha}}$  and  $\mathfrak{a}_{\alpha} \subseteq \mathfrak{b}_{\alpha}$  if  $\mathfrak{b}_{\alpha} \in \mathcal{I}^+(\mathcal{A}_{\alpha})$ .

#### Final inductive construction

Enumerate  $\{b_{\delta} : \delta < \mathfrak{c}\} = [\omega]^{\omega}$ . Use *Main Lemma* through all  $\mathfrak{c}$  - at stage  $\delta < \mathfrak{c}$  for  $b = b_{\delta}$  if  $b_{\delta} \in \mathcal{I}^+(\mathcal{A}_{\delta})$  and  $b = \omega$  otherwise.

This gives families  $\{\sigma_{\alpha} : \alpha < \mathfrak{c}\} \subseteq 2^{<\mathfrak{s}}, \{a_{\alpha} : \alpha < \mathfrak{c}\} \subseteq [\omega]^{\omega}$  such that for all  $\alpha < \mathfrak{c}$  it holds  $a_{\alpha} \in \mathcal{I}_{\sigma_{\alpha}}$  and  $a_{\alpha} \subseteq b_{\alpha}$  if  $b_{\alpha} \in \mathcal{I}^{+}(\mathcal{A}_{\alpha})$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Why it works? Given any  $b \in \mathcal{I}^+(\mathcal{A}_{\mathfrak{c}}) = \bigcap \{ \mathcal{I}^+(\mathcal{A}_{\alpha}) : \alpha < \mathfrak{c} \}$ choose  $\delta < \mathfrak{c}$  with  $b = b_{\delta}$ . Then by the above construction  $b_{\delta} \supseteq a_{\delta} \in \mathcal{A}_{\mathfrak{c}}$ , so completely separable MAD family is cooked. **Open Problem** 

How to get rid of P(a, s) from the third case of Shelah's proof?

(日) (同) (三) (三)

### **Open Problem**

How to get rid of P(a, s) from the third case of Shelah's proof?

### Quest for splitting families

Use  $b \leq a < s$  to find a special splitting family related (somehow) to *b* and prove analogons of Splitting Lemma and Main Lemma. While H.Mildenberger, D.Raghavan, J.Steprāns used  $s_{\omega,\omega}$  to remove the assumption U(s) from the second case, the framework of s(A)'s does not seemed to be sufficient for the removing P(a, s).

# THANKS !!!

## THANK YOU !

・ロン ・部 と ・ ヨン ・ ヨン …

æ

Sławomir Szczepaniak (Polish Academy of Sciences) Some remarks on splittings